Po delší době Vás opět seznamuji s vývojem nových stavebnic ve
společnosti
Tipa, spol. s r.o. Čtenáři tohoto magazínu mají možnost jako
první si přečíst technickou dokumentaci limitované série digitronových hodin
PT029, patrně poslední konstrukce s volně šiřitelnou dokumentací. Po třech
letech práce na zapojeních především pro mladé elektrotechniky se totiž náš
vývoj po dokončení všech rozpracovaných konstrukcí začne soustřeďovat
na ekonomicky perspektivnější výrobů speciálních zařízení na míru zákazníka.
Nově dokončený sortiment stavebnic i ten stávající však z trhu nezmizí a
bude k dispozici dalším nadšeným amatérským konstruktérům snad mnoho následujících
let. Většina elektro prodejen ruší neperspektivní prodej součástek,
stavebnice tak budou jednou z posledních alternativ, jak si s elektronikou pohrát
i v dnešní, kutilům nepříliš nakloněné době. Ať chceme nebo ne, digitální
přijímače a reproduktory nakonec vytlačí stojany s odpory ze všech
maloobchodních prodejen. To že na mnoha místech ještě jsou, je spíše z důvodu,
že se zatím nikdo neměl pro jejich likvidaci.
Pozor, stavebnice společnosti TIPA již není v prodeji (nejsme schopni zajistit další nepoužité digitrony). Vzhledem k tomu, že pro bastlíře není až takový problém je někde sehnat, vypájet apod., bude od června 2009 v prodeji alespoň plošný spoj s dokumentací.
Úvod
Ještě než se v České republice strhl boj o poslední zbytky starých číselných zobrazovačů na principu studeného výboje, takzvaných digitronů, stihl jsem přesunout téměř všechny skladové zásoby Z574M společnosti TIPA, spol. s r.o. pod sekci Stavebnice a moduly s myšlenkou, že se jednou budou hodit. Pro firmu 15 let neprodejný šrot na čas zkrátka ležel jen na jiném místě, kde už se zbavil štítku prodejní položka a čekal na další využití.
Během přípravy limitované série 100ks stavebnic digitronových hodin ze začala vynořovat spousta amatérských konstrukcí a s tím i hlad po těžko sehnatelných, ale designově jistě výjimečných zobrazovačích. Po pár kusech, které jsem nechal k prodeji, se jen zaprášilo. A byly to první prodané kusy po spoustě let, kdy si jich vůbec nikdo nevšímal. Proto jsem rád, že jsem stovky kusů uchránil od velkých očí mnoha amatérských konstruktérů a mohl je využít pro výjimečnou profesionální stavebnici, která bude díky nynějšímu vysokému zájmu o hodiny podobných konstrukcí jistě velice žádaná.
Hned po objevu součástek jsem přemýšlel, jak se zbavit nutnosti použít transformátoru pro napájení anod digitronů a čím budu řídit spínání číslic. Ještě před nahlédnutím na internet pro nějaké ty nápady jsem měl na jazyku dvě věci: místo transformátoru Villardův násobič napětí a pro ovládání digitronů dekadické čítače CMOS 4017. Po shlédnutí cizích zapojení jsem zjistil, že můj geniální nápad řešení nebyl až tak jedinečný.
Dost už úvodních řečí, pojďme si pročíst další kapitoly věnující se popisu zapojení a konstrukci hodin.
1. Základní parametry
Napájecí napětí: ~24 – 30V
Proudový odběr: max 65mA
Spotřeba el. energie ze sítě: max 2W
Proudový odběr při nouzovém provozu z 9V baterie: max 6mA
Doladění taktu oscilátoru: ±10 sekund za den
Napájecí transformátor: HAHN EI30/12,5 1,9VA ta70/F 230V/2x12V 2x79mA
Přístrojová krabička zdroje střídavého napětí 24V: Z-42
Rozměry plošného spoje: 186,7 x 67,3 mm
2. Schéma zapojení
Zařízení je realizováno za pomocí klasických CMOS obvodů řady 4000, vyznačuje se nízkou spotřebou, jednoduchým ovládáním a je vybaveno nouzovým bateriovým režimem pro případ výpadku elektrické rozvodné sítě ~230V.
2.1. Zdroj napětí
2.1.1. Externí napájecí zdroj
Hodiny je třeba napájet střídavým napětím 24V. Zapojení jsem nechtěl nijak komplikovat střídačem a proto využívám transformovaného síťového napětí. Jelikož je odběr našeho zařízení velmi malý, pro jeho provoz naprosto dostačuje maličký transformátor HAHN 1,9W 230V/2x12V, jehož dvě sekundární vinutí propojíme v jedno a získáme tak střídavé napětí 24V. Primární okruh je chráněn pojistkou F1.
2.1.2. Zdroj anodového napětí
Pro provoz digitronů Z574M potřebujeme anodové napětí cca 160V a relativně malý proud. Nabízí se nám dvě varianty, jak napětí ~24V transformovat. Buďto pomocí dalšího transformátorku (Čehož já jsem odpůrce, jelikož se špatně shání a ruční navíjení mě nebaví.) nebo Villardova násobiče napětí složeného z kondenzátorů a diod, jak vidíme na obrázku. Náš násobič je tříčlenný, vstupní napětí násobí 23, tedy 8x. Je-li na vstupu 24V, na výstupu naměříme 192V. Za násobičem následuje část nastavitelného stabilizátoru napětí (R33, R34, TR1, D7, C9, T29), přičemž trimrem TR1 nastavujeme hodnotu výstupního napětí.
2.1.3. Zdroj řídící logiky a záložní zdroj nouzového provozu
Veškeré řídicí CMOS obvody jsou napájeny devíti volty, log. 1 se tedy rovná úrovni cca 7,5V – 9V. Bývá zvykem užívat 5V logiku, já však nejsem limitován ani 5V mikroprocesorem, ani TTL obvody a proto si můžu volit mezi 3 – 18V. Při 5V by byly rezistory 100k (kterých máme nadměrné množství a potřebují zužitkovat) na bázi spínacích tranzistorů příliš vysoké hodnoty, při napájení 18V zase zbytečně zvyšujeme odběr zařízení a nejsem si jistý, jak by to snesl hodinový krystal. Vzhledem k tomu, že pro nouzový režim jsem si jako zdroj napětí vybral 9V baterii, jako nejrozumnější se jevilo i při běžném režimu použít 9V napájení. Sáhl jsem tedy po jednocestném usměrnění (D8), filtraci (C10) a následné stabilizaci obvodem 7809 (IC9). Proti rozkmitu obvodu jsou na jeho vstupu i výstupu užity kondenzátory 100n (C11, C12). V případě výpadku elektrické rozvodné sítě začne řídící logiku napájet 9V baterie skrze diodu D9. Počítáme-li s úbytkem na PN přechodu 0,7V, samotné CMOS obvody jsou pak napájeny cca 8,3V. Jakmile dojde k obnovení dodávky elektrické energie, za stabilizátorem naměříme 9V, což je napětí vyšší, než 8,3V. Jelikož je na katodě D9 vyšší napětí než na její anodě, ocitne se dioda v nepropustném směru a záložní bateriový zdroj se přestane využívat, tím i vybíjet. Toto zapojení tedy nerealizuje nabíječku záložní baterie, jsou-li hodiny v síti. Proto je možno připojit zcela obyčejnou 9V baterii, kterou je však nutné jednou za čas (cca co tři roky, záleží na množství výpadků elektřiny) vyměnit.
2.2. Časová základna
2.2.1. Oscilátor
Základním prvkem oscilátoru hodin je integrovaný obvod 4060 (IC1) vyvinutý speciálně pro časové aplikace. Jde o 12-ti bitový čítač se zabudovanými invertory pro postavení oscilátoru s krystalem (jinak většinou realizovaného pomocí hradel NAND zapojených jako invertory). Výstup oscilátoru je připojen na 14-ti stupňový 12-ti bitový čítač, u jehož posledních 11 stupňů je indikováno naplnění logickou hodnotou na výstupech obvodu Q4 – Q14. Jako každý čítač lze i tento využít pro účely dělení kmitočtu. Tak dostaneme na výstup Q14 z původních 32,768kHz hodinového krystalu nižší takt o frekvenci 8Hz. To je ovšem stále příliš vysoký kmitočet. Pro čítání minut jej budeme muset dále dělit. Důležitá součást oscilátoru je ještě kapacitní trimr C2, pomocí něhož můžeme jemně doladit kmitočet a tím i seřídit rychlost hodin v případě, že se budou opožďovat či zrychlovat oproti reálnému času.
2.2.2. Dělení signálu na minutový puls – 1/60Hz
Z řady CMOS obvodů se po zbytek zapojení setkáme už pouze s jediným, a to s dekadickým čítačem 1 z 10, 4017. Za podmínky, že je vstup
ENABLE (13) a RESET (15) připojen k zemi (log. 0), se při každém impulsu na vstupu
CLOCK (14) navýší stav čítače vždy o jeden a na příslušném výstupu
Q0 – Q9 se objeví log. 1. Je-li stav čítače 5, naměříme na výstupu
Q5 log. 1 a na všech ostatních výstupech log. 0. Při přetečení (10. cyklu) se na výstupu
CARRY OUT (12) na chvíli objeví log 0. a čítač se vrátí na počáteční hodnotu nula. Kmitočet na
CO je tak roven 1/10 kmitočtu na vstupu CLK. Tak získáváme děličku kmitočtu 1:10, ve schématu obvod IC2. Pro získání minutového pulsu však musíme 8Hz signál vydělit 480, zatím jsme učinili dělení pouze desíti, proto za obvodem IC2 následují další dvě děličky využívající stejný CMOS obvod 4017. IC3 je zapojen jako dělička 1:8, čítací cyklus je uměle zkrácen na 8 stavů, jelikož devátý výstup je přiveden na vstup
RESET – při posunu na hodnotu 8 (nesmíme zapomenout na hodnotu 0, osmička je tedy už devátým stavem, který využijeme pro aktivaci RESETu) se na
Q8 a díky propojení i na RESETu objevuje log. 1 a čítání probíhá nanovo. Na jakémkoli výstupu
Q0 – Q7 tak bude kmitočet roven 1/8 kmitočtu na vstupu CLK. Já jsem si jako výstup vyděleného signálu vybral
Q7 a přivedl jej na vstup CLK IC4, posledního ze série děličů signálu na minutový puls. Zde je nastaven dělicí poměr na 1:6. Postup je stejný jako u IC3, jen místo 9. výstupu používáme pro aktivaci
RESETu výstup sedmý a vydělený signál můžeme vést dále z výstupů Q0 –
Q5, přičemž já jsem si opět zvolil poslední možný Q5. Nyní si zrekapitulujeme všechna dělení 8Hz signálu. Nejdříve jsme dělili 10-ti, poté 8-mi a nakonec 6-ti. Jak víme i z matematiky, pořadí členů podílu je libovolné a na výsledku se nic nemění. Pro jednodušší pochopení tedy signál dělíme 8-mi, 6-ti a 10-ti
>> 8Hz : 8 : 6 : 10 >> 8Hz : 8 :
(6x10) >> 8Hz : 8 = 1Hz, 1Hz : 60 = 1/60Hz. Signálu nesoucímu minutový puls záměrně zvýšíme impedanci o
100k zapojením rezistoru R40 do jeho cesty, čímž v případě potřeby dáme přednost signálu s nižší impedancí. (Signál pro nastavení hodin, který v cestě žádný rezistor nemá, je tvrdším zdrojem napětí a proto je v případě stisknutí některého z tlačítek pro nastavení času upřednostněn před minutovým
pulsem.)
2.3. Čítání a zobrazení minut
2.3.1. Čítání a zobrazení jednotek minut
Minutový puls z IC4 přivádíme na vstup CLK dalšího CMOS 4017 (IC5), který poslouží jako dělič i budič jednotlivých číslic digitronu E1 zobrazujícího jednotky minut. Potřebujeme čítat do devíti a to vždy, bez výjimky. Čítací cyklus dekadického čítače 4017 tedy nebude třeba nijak upravovat. Při přetečení (desátém pulsu) začne čítat opět od nuly a vyšle impuls z
CARRY OUT na vstup CLK IC6, čítače a budiče desítek minut – po čísle devět na jednotkách minut se tedy navýší hodnota o 1 na desítkách minut.
2.3.2. Čítání a zobrazení desítek minut
Je jasné, že jen těžko bychom zobrazovali více jak 59 minut. Proto všechna čísla větší nežli 5 jsou pro nás nepotřebná a zkrátíme čítací cyklus pouze do čísla 5. Poté bude následovat reset a vyslání pulsu na vstup
CLK IC7, čítače a budiče jednotek hodin.
2.3.3. Čítání a zobrazení jednotek hodin
Vždy po 59. minutě dojde k vynulování jednotek i desítek minut a navýšení jednotek hodin o jednu hodinu. (je li méně jak 23 hodin). Cyklus čítání je zde podmíněný – mění se tedy podle aktuální situace. V případě, že stav čítače desítek hodin je roven „2“, čítá pouze po hodnotu 3 (23:59) a poté se spolu s čítačem desítek hodin vynuluje (resetuje). Za předpokladu, že stav čítače desítek hodin je menší než „2“, proběhne nezkrácený čítací cyklus až po číslo 9 (19:59) a z
CARRY OUT vyjde impuls na vstup CLK IC8, čítače a budiče desítek hodin – po čísle devět na jednotkách hodin se tedy navýší hodnota o 1 na desítkách hodin.
2.3.4. Čítání a zobrazení desítek hodin
Více, než dvě číslice zde potřebovat nebudeme. Vystačíme si s jedničkou a dvojkou. Nulu je zbytečné zobrazovat a proto výstup
Q0 zůstane nezapojen na žádný ze spínacích tranzistorů. Jakmile by mělo dojít k zobrazení 24 hodin, dojde k resetu všech čítačů a budičů jednotlivých digitronů.
2.4. RESET
2.4.1. Globální RESET
Při přivedení napájecího napětí ~24V je třeba vynulovat všechny čítače IC5 – IC8. K tomuto slouží globální RESET. Při startu tedy potřebujeme na okamžik vyslat log. 0 na všechny vstupy
RES zmíněných obvodů. Toho docílíme jednoduše pomocí C13 a R4. Okamžik trvá, než se kondenzátor C13 nabije – v tu chvíli je propustný a na R4 tak naměříme skokově 9V – log. 1. Jakmile se kondenzátor nabije, stane se neprůchozí a odporem R4 připojeným na GND definujeme log. 0. Funkce RESET je aktivována pouze při log. 1, během chvíle po startu jsou tedy hodiny v provozním stavu. V případě, že je připojena záložní baterie 9V, ke globálnímu RESETu nikdy nedojde – C13 je udržován stále nabitý. Ke globálnímu RESETu dojde rovněž v případě, že není připojeno střídavé napětí 24V a připojíme záložní baterii. K obvodům IC6-IC8 je globální RESET veden skrze diody D13 a D14, aby nebyl ovlivňován lokálním RESETem těchto obvodů.
2.4.2. Lokální RESET
Lokální RESET se týká pouze určených obvodů, jedná se o samostatné okruhy napomáhající zkrátit čítací cykly, je vyvolán za předem stanovených podmínek. U IC6 násilně krátíme čítací cyklus, abychom mohli zobrazovat pouze čísla 0-5. O něco složitější je to u IC7 a IC8 (jednotky a desítky hodin). Potřebujeme je vynulovat v případě, že by se měla zobrazit hodnota „24“. Tedy „2“ u IC8 a „4“ u IC7. Zde přichází na řadu funkce AND. Chci vyvolat reset v případě, že
Q2 IC8 = 1 a zároveň (x) Q4 IC7 = 1. Když to přeložím: RESET vyvolat jedině za předpokladu, že zároveň na obou výstupech
(Q2 IC8, Q4 IC7) naměřím 9V, tedy log.1. To se dá realizovat pomocí hradla AND. Ale uvažme, je třeba na spoj umisťovat další CMOS obvod? Není, můžeme si opět pomoci diodami. Budeme sledovat skrze D10 a D11 logickou hodnotu na již zmíněných výstupech. Díky užití diod pak v případě rozdílných hodnot na obou výstupech nedojde k jejich zkratování, zároveň však jsme za diodami schopni naměřit jedině log. 0 kvůli jejich jednocestné propustnosti. Log. 1 je potom zcela nedefinovaná a to napravíme rezistorem R3. V případě, že bude alespoň na jednom z výstupů log. 0, bude i na
RESET IC7 a IC8 skrze R2 přiváděna log. 0 a k vynulování tedy nedojde. Když bude na obou výstupech
log. 1, dioda D12 se ocitne v propustném směru a dojde ke vzniku odporového děliče
(R3+RD12):R4 a na vstup RESET IC7 a IC8 se tak přivede napětí (10/11x9V-10/11x0,7V) postačující pro vynulování obou čítačů IC7, IC8. Možná byste namítli, že zapojení mohu zjednodušit vypuštěním R2 a D12. To bych ovšem v případě, že na
Q2 IC8 či Q4 IC7 byla log. 0, zablokoval globální RESET.
2.5. Zobrazení číslic
K tomu, aby se na digitronu zobrazila jedna z číslic 0-9, potřebuji mít v provozu zdroj anodového napětí cca 160V i zdroj napětí 9V pro řídící logiku. Proto v případě pouhého nouzového napájení z baterie nedojde k rozsvícení žádné z číslic. Mezi anodou a spínanou zemí (katodou digitronu) je potenciál 160V, je tedy logické, že 9V logika nemůže digitrony řídit přímo. Proto využíváme vysokonapěťových NPN tranzistorů MPSA42, kterými propojujeme jednotlivé katody (číslice) se zemí (GND).
3. Konstrukce
3.1. Plošný spoj
Plošné spoje pro tuto stavebnici vyrobila společnost SEMACH z Valašského Meziříčí. DPS jsou pocínované, vyvrtané, nastříhané, s nepájivou maskou a potiskem rozložení součástek. Veškeré součástky až na externí zdroj střídavého napětí 24V jsou umístěny na jednu jedinou desku PT029 navrženou v prostředí EAGLE 4.11 for Windows. Spoj je jednostranný, při jeho tvorbě byly užity upravené a vlastní knihovny součástek s většími pájecími ploškami. Zapojení je tak schopen sestavit i méně zdatný konstruktér.
3.1.1. Obrazec spoje
3.2. Sestavení hodin
Jako první zapájíme jediné dvě drátové propojky PR1 a PR2. Poté osadíme rezistory. V případě, že se na spoj nevejdou naležato, ohneme jeden drátový vývod a zapájíme je nastojato. Pokud zařízení stavíte pro soutěžní účely, nezapomeňte na stejnou orientaci barevného značení rezistorů. Pokračujeme ve stavbě osazením diod, patic, tlačítek, svorkovnice, kondenzátorů, trimrů. Jako jedny z posledních pájíme integrované obvody a tranzistory. Teď už nás čekají pouze ty největší lahůdky.
3.2.1. Osazení digitronů a doutnavky
Digitrony Z574M mají dlouhé pájitelné vývody, proto stavebnice nevyužívá patice pro elektronky. V praxi to znamená, že jak si je zapájíte, tak už budou navěky stát. Projeví se tak Vaše míra trpělivosti. Doporučuji zkrátit vývody digitronů, ještě než se ho pokusíte zapasovat do spoje. Půjde Vám pak daleko lépe synchronizované zasunutí všech 13-ti vývodů najednou. Digitrony umístíme přibližně 3mm nad spoj, řádně je srovnáme a připájíme zatím jen několik vývodů každého z nich. Znovu překontrolujeme, zdali jsou všechny čtyři zobrazovače upevněny rovně a v případě, že jsme spokojeni, dopájíme zbylé vývody. Předěl mezi hodinami a minutami nám vytváří doutnavka E5. Snažíme se ji rovněž upevnit rovně, cca 1 až 3mm nad spoj. To že posléze bude svítit pouze jedna ze dvou elektrod je způsobeno stejnosměrným napájením doutnavky, nejedná se o žádnou závadu.
3.2.2. Osazení hodinového krystalu
Hodinový krystal je vůbec tou nejchoulostivější součástkou stavebnice. Je háklivý na nárazy, ale i teplotu pájení. Při teplotě hrotu pájky 300°C nesmíte krystal pájet déle jak 3 sekundy. Vůbec s největší opatrností pájejte při použití trafopájky. Prolít cín a rychle pryč. Počkat alespoň minutu a až potom zapájet druhý vývod. Nastavte si tedy minimální teplotu pájky a rovněž co nejkratší dobu pájejte. V případě, že Vám potom hodiny nepojedou, nebo poběží jen krátký čas, je nejpravděpodobnější příčinou přehřátí krystalu při pájení.
3.3. Sestavení externího zdroje
Stavebnice obsahuje již sestavený zdroj, jehož pocínované drátové vývody pouze připojíme ke svorkovnici. Jedná se o střídavé napětí a proto nezáleží na tom, který drát připevníme do první či druhé zdířky. Pro konstruktéry, kteří si toto zapojení budou chtít postavit sami na vlastní pěst, nebo jim nic jiného nezbude na vybranou, až se tato limitovaná série doprodá, popíši konstrukci zdroje. Snažil jsem se o co nejjednodušší a nejlevnější řešení. Proto jsem se rozhodl využít krabičku Z-42 určenou přímo pro menší síťové adaptéry a jako nejvhodnější transformátor jsem shledal model „HAHN EI30/12,5 1,9VA ta70/F 230V/2x12V 2x79mA“, který je běžně k dostání například u konkurenční společnosti www.gme.cz. Sekundární vinutí má dvojí. Když je zapojíme do série, získáme potřebných 24V/79mA. V případě proudového odběru tedy máme ještě malou rezervu. Transformátorek se namíru vleze do vybrané krabičky. Přilepíme jej tavicí pistolí. Primární okruh jistíme pojistkou. Aby ji bylo možno vyměnit, použili jsme pojistkové pouzdro určené pro autorádia – jeho výhodou jsou drátové vývody a také to, že se tak akorát vleze na bok krabičky. Optimální bude použít 10mA jištění. Propojíme síťovou vidlici s primárním vinutím (skrze zmíněnou pojistku), spojíme sekundární vinutí (na obrázku patrná cínová kapka), a vyvedeme dvojlinkou střídavých 24V. Nezapomeneme všechny vodiče dobře zaizolovat, například stahovací bužírkou. Poté pájecí pistolí zatavíme rovněž síťovou vidlici. Počkáme pár minut, až horký plast ztuhne a krabičku uzavřeme. Před ostrým nasazením změříme výstupní napětí. To může naprázdno přesáhnout 30V. (Pro čínské transformátorky HAHN je typické, že i při zatížení je jejich výstupní napětí o něco vyšší, než se uvádí na jeho pouzdru.)
3.4. Oživení
Zapojení stavíte i užíváte na vlastní riziko! Pracujete s nebezpečným síťovým napětím 230V.
V samotné konstrukci hodin za násobičem napětí naměříme až 200V. Stejně vysoké napětí se objevuje i na jezdci trimru TR1. V žádném případě se jej nedotýkejte a pro jeho nastavení NEPOUŽÍVEJTE neizolovaný šroubovák. Když je zařízení v provozu, dotýkejte se pouze nevodivých částí, nešahejte v žádném případě na plošný spoj ze strany vodivých cest. Zdroj anodového napětí je sice velmi měkký a neměl by Vám ublížit, přesto dbejte nejvyšší opatrnosti. Jednáte na své vlastní nebezpečí. U lidí s onemocněním srdečního svalu může v případě úrazu dojít k zástavě srdce.
Společnost TIPA, spol. s r.o. a autor zapojení se zříkají jakékoli právní odpovědnosti
za užívání tohoto zařízení.
Oživení zařízení není složité, ale vzhledem k vysokému napětí, které je nutné pro provoz digitronů, je třeba ctít základní bezpečnostní zásady. V žádném případě nastavení ani jakoukoli jinou manipulaci se zapnutými hodinami nečiňte bez dohledu druhé osoby. Používejte k práci pouze jednu ruku a tu druhou si raději schovejte do kapsy (není horší situace, než uzavřít obvod skrze ruce a srdce). Doporučujeme použít gumové rukavice a v případě užití nářadí používejte pouze nástrojů s izolovanou rukojetí. Při jejich používání se nedotýkejte jejich neizolovaných částí.
Nejprve pečlivě zkontrolujte, zdali jsou všechny součástky zapájeny správně. Tedy správné hodnoty a orientace. Buďte obezřetní obzvláště u orientace diod. Při jejich špatném zapájení se v lepším případě změní čítací cykly CMOS 4017, v tom horším dojde někde ke zkratu, který může vést ke zničení dalších součástek (obzvláště náchylné jsou tranzistory MPSA42). Opačné zasunutí CMOS obvodů vede k jejich destrukci, stejně tak může dojít k explozi v případě otočení elektrolytického kondenzátoru. Pokud jste do teď důkladně neočistili DPS (desku plošných spojů) ze strany spojů, učiňte tak a případné zanesení kalafunou či jiné špíny důkladně otřete lihem. Zkontrolujte vizuálně a v případě nepřehledných spojů i elektricky, zdali nedošlo nedopatřením k nepatřičnému prolití některých cest. Pamatujte, že důkladná kontrola vaší konstrukční práce je ve výsledku úsporou spousty času i peněz.
Trimr TR1 nastavíme téměř na doraz doleva. Vodiče napájecího zdroje připevníme do svorkovnice ještě než zdroj zapojíme do zásuvky. Zasuneme zdroj do sítě a vyčkáme dvě sekundy, pokud se za tu dobu nerozsvítí digitrony (měly by se zobrazit tři nuly), zařízení ihned vypneme a hledáme konstrukční chyby v podobě zkratu či studeného spoje. Pozor, dokud po vypnutí doutnavka i nepatrně svítí, je v kondenzátorech násobiče stále akumulováno vysoké napětí. S manipulací doporučuji počkat až do chvíle, kdy doutnavka zcela zhasne.
V případě, že se digitrony úspěšně rozsvítí, snižujeme anodové napětí trimrem TR1 otáčením doprava do chvíle, než se číslice začnou rozostřovat. Tlačítky S1 – S3 nastavíme čas. Stiskem jednoho z tlačítek přivádíme na místo minutového pulsu frekvenci vyšší. Tím zrychlíme proces čítání a jednoduše nastavíme požadovaný čas. Každé z tlačítek je pro jinou rychlost posunu. Stisknutí S1 posouváme čas velice pomalu, slouží především pro nastavení minut. S3 dojde naopak k velmi rychlému posunu. Pokud čas stojí a nepohne se, bude nejspíš nefunkční oscilátor. S největší pravděpodobností půjde o vadný krystal, který se patrně při pájení přehřál. Zjistit, zdali oscilátor kmitá, lze buďto osciloskopem, logickou sondou nebo v případě, že nemáme ani jedno z uvedených zařízení, použijeme LED diodu s předřadným rezistorem cca 220R. Anodu připojíme na +9V a katodu skrze rezistor na PIN 3 obvodu IC1. Běli bychom vidět blikání. Pokud nám 8Hz takt blikání splývá, můžeme se připojit za první děličku, PIN 12 IC2. V případě, že ani zde nepostřehneme blikání LED diody, je skutečně nefunkční oscilátor. Pokud nepomůže výměna krystalu či CMOS 4060, závada bude patrně opět v konstrukci a nějakém studeném spoji či zkratu (tyto věci hledejte vždy jako první).
Pokud vše správně funguje a máte nastavený čas, kontrolujte co 24 hodin, jestli se hodiny zpožďují či zrychlují. Jejich takt lze jemně regulovat kapacitním trimrem C2. Čím větší plocha pevně usazených a otočných plíšků bude splývat, tím více snížím takt hodin.
3.5. Experimenty s podsvícením digitronů
Poslední dobou jsou velice populární super-jasné modré LED diody a ani naše retro hodiny se podobným experimentům nebrání. Pro LEDkomaniaky jsem tedy záměrně nechal ve spoji pod digitrony vyvrtat díry o dostatečné velikosti, aby do ní bylo možné zapustit 5-ti mm LED diodu. Pokud byste chtěli využít 9V zdroje pro CMOS obvody pro napájení modrých LED diod, zapojte vždy dvě do série a nebudete potřebovat použít předřadných odporů (ale ujistěte se, zdali snesou napájecí napětí 4,5V). Toto podsvětlení ovšem bude mít spotřebu možná vyšší jak celé hodiny a dodávaný zdroj již není pro další spotřebiče dimenzován.
3.6. Rozpis součástek a dílů
Použité zdroje
http://www.edunet.souepl.cz/~weisz/dilna/ - učební materiály SOU elektrotechnického v Plzni
http://veverka.sh.cvut.cz/~sykora/prj/digihodiny/digihodiny.html - konstrukce digitronových hodin
Do distribuce půjde toto zařízení přibližně v březnu až dubnu 2008,
odhad prodejní ceny: do 1000 Kč včetně DPH.
Digitronové hodiny si budete moci koupit na
www.tipa.eu pod označením PT029 nebo objednat v maloobchodních prodejnách v Brně a Opavě (nové prodejny se budují v Ostravě a Praze)
V případě dotazů pište na richard.vacula(zavinac)tipa.eu
Tato série je limitovaná množstvím digitronů, kterými výrobce stavebnice disponuje.